Exercise 101

The angle of elevation of the sun is decreasing at a rate of $0.25 \mathrm{rad} / \mathrm{h}$. How fast is the shadow cast by a $400-\mathrm{ft}$-tall building increasing when the angle of elevation of the sun is $\pi / 6$?

Solution

Draw a schematic of the sun and the building at a certain time.

The aim is to find $d x / d t$ when $\theta=\pi / 6$. Take the tangent of the angle to relate θ with the labelled sides of the triangle.

$$
\tan \theta=\frac{400}{x} \quad \rightarrow \quad x=\frac{400}{\tan \theta}
$$

Take the derivative of both sides with respect to time.

$$
\begin{aligned}
\frac{d}{d t}(\tan \theta) & =\frac{d}{d t}\left(\frac{400}{x}\right) \\
\left(\sec ^{2} \theta\right) \cdot \frac{d \theta}{d t} & =\left(-\frac{400}{x^{2}}\right) \cdot \frac{d x}{d t} \\
\left(\frac{1}{\cos ^{2} \theta}\right) \frac{d \theta}{d t} & =-\frac{400}{\left(\frac{400}{\tan \theta}\right)^{2}} \frac{d x}{d t} \\
& =-\frac{\tan ^{2} \theta}{400} \frac{d x}{d t} \\
& =-\frac{\sin ^{2} \theta}{400 \cos ^{2} \theta} \frac{d x}{d t}
\end{aligned}
$$

Solve for $d x / d t$.

$$
\frac{d x}{d t}=-\frac{400}{\sin ^{2} \theta} \frac{d \theta}{d t}
$$

Therefore, the rate that the shadow is increasing when $\theta=\pi / 6$ is

$$
\left.\frac{d x}{d t}\right|_{\theta=\pi / 6}=-\frac{400}{\sin ^{2} \frac{\pi}{6}}(-0.25)=400 \frac{\mathrm{ft}}{\mathrm{hr}} .
$$

